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PROBLEM DESCRIPTION

The problem presented here is part of the investigations conducted for the

design of the data acquisition and decision making system for an unmanned

exploratory platform. As we know, it is necessary for the platform to be

equipped with a data acquisition and a decision making system.

Usually, a laser range finder is chosen as a main sensing device which can

determine the distance to a point within a certain accuracy. With reference to

Figure 1, the terrain is scanned by varying the azimuth angle, ei , and the ele-

vation angle, Ai, of the laser beam in a discrete fashion. In general, the

measurements are then available in the form of a "range matrix" as

M = {mij} (1)

where i = 1,2,...,N, correspond to the elevation angle, Ai

j = 1,2 ... ,L, correspond to the azimuth angle, ej

The range matrix M above describes a certain scanned area of the ground in

front of the mobile robot platform and can be used to detect edges of discrete

objects or to estimate the slopes of the terrain. This is a two-dimensional

grid. In our study for simplicity, a one-dimensional case is first considered,

that is, change Ai for a fixed Gj. Thus, we have observation data mi

corresponding to Ai, from which we can estimate the in-path slopes of the range.

Generally speaking, both Ai and mi are subject to random errors such that

Ai =i + vi (2)

mi(i)= f(Ai) + Ai (3)

where

ti are known knots; (4a)

f(t) is an unknown function; (4b)

Ai are stochastic intervals; (5a)

mi(A i ) are measurements corrupted by noise; (5b)
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vi and pi are random errors with zero means, for all i = 1,2,...N.

Equations (2) and (3) imply that both independent and dependent variables

are corrupted by random noise, which may make the problem more complicated, as

shown in Figure 2.

With the nodal described above, we are now able to formulate the problem.

OBJECTIVE FUNCTION FORMULATION

Referring to Figure 3, it is apparent that we cannot use the method of

interpolation directly to approximate the unknown function f since the Ai are

stochastic. Instead of this, we would like to estimate f by an approximating

function h; our objective is to determine the values of function h and its first

derivatives due to random angle error vi.

The following relations can be derived by using Taylor's series expansion

at Ai:
df(ti)

f(Ai) = f(gi) +- ------ vi + o(vi) (6)dt

where o(v) represents the higher order term of v. Using the first-order

approximation yields:

df(t i )

f(Ai) a f(i) +- ------ vi (7)dt

Similarly, for the approximating function h to estimate the unknown function f,

we have
A dh(ti)

h(Ai) = h(ti) +------- vi  (8)df

From the equations above, one obtains

A dh(ti)
Ai = h(Ai) - h(ti) = ------ (vi) (9)dt

The stochastic difference A i for the approximating function h should be as small

as possible in this problem.

2



We will attempt to determine a function approximation h with a compromise

between the following objectives:

1. The measurement value mi should be fitted close enough.

2. The approximating function h should be smooth enough in the sense that

the discontinuities in its second derivative are as small as possible.

Now in order to be able to formulate this criterion mathematically, we need

to find some measure of smoothness and some measure of closeness of fit. To be

more specific, suppose that L is a linear space of "smooth" functions and that

Jc is a functional defined on L which measures how well a function fits the

data. Suppose in addition that Js is a functional defined on L which measures

the smoothness of an element on L, then the smoothing problem is the following:

find s e L, such that

J(s) = inf J(h) or J(s) 4 3(h) (10)
hcL

where

J(h) = Jc(h) + Js(h) (11)

The Measure of Closeness

From Figure 3, in order to fit data (vi,mi) as closely as possible, we can

simply take the sum of squared errors from Eqs. (3) and (9) as a measure of

closeness of fit Jc, that is

N dh - dh
= E (vi d '(vi +
i=1

N
+ E (h(Ci) - mi(gi)]TRi'[h(ti) - mi(ti)] (12)
i=1

where from Eq. (3)
6A

Ri  E(piLiT] (13)
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Here, R,' and Ri' are weighing matrices which reflect our degree of con-

fidence in the data mi and vi. For convenience, it is assumed that Ri and Ri

are constants for all i = 1,2,...,N.

From Eq. (9), the error Ai due to the random noise vi can be written as

dh(ti)
i =  v------vi (14)

It is assumed that the random noise vi is a certain stochastic process with zero

mean as studied in the next section. Thus, the error covariance matrix for Xi

is
dh(Ci) dh(t i )

E[XikiT] =- ------ E[viviT][ ----- ]T (15)dt dt

The Measure of Smoothness

From the viewpoint of the approximation theory, the spline function pro-

vides a means of optimally reconstructing an unknown function f such that

f 1 [s2(4)] 2dC 4 f1 [h2(t)]2dC = Js (16)

where s is a spline function, s e C2 , and h is an approximation function of the

unknown function f and h c C2. Thus, s(t) is the function, among those

satisfying some constraints, that is "smoothest" is the sense of Eq. (16).

To be more convenient and simpler, in our study we will use the piecewise

cubic spline s c C2 . Then Eq. (16) can be rewritten as

N fi
is = P E fi [h(t)]2dC (17)
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In summary, substituting Eqs. (12) and (17) into Eq. (11) yields an objective

functional 3

N
J = E [h(t i ) - mi]TRi'[h(4i) - mi]

i=1

N dh T^-i dh N Ci
+ E (-- vi)TRi (i - vi) + p E f [h(f)] 2dC (18)

i1 dt dc i=11

where p > 0 is a smoothing parameter.

STOCHASTIC EXPECTATION

Since vi is a stochastic variable, we use the expected value of J, E(J], as

the functional to be minimized, i.e.,

N
E[J] = E{ E [h(ti) - mi]TRi'[h(i) - mi]

i =1

N dh T- dh N i -
+ E (-- vi) R;(- vi) + p E fi (h()]2d } (19)i=1 dt d i=2 t -

where h is a set of any piecewise cubic Hermite polynomials and h C C'.

In order to obtain the solution to Eq. (19), the following algebraic manip-

ulations for Eq. (19) are necessary:

Define hi = h(Ci) , hi = h(i)

N TT._,* N
E[J] = E [(hi-mi)TRi ' (hi-mi) + E(vihiR i hivi)] + p £ f[h()]dt (20)

i=1 i=2

Using the matrix identity, the second term of the above equation becomes

E(vihiRi'hivi) = Trace [(hiRi'hi)E(vivi)]

and

T A
E(vivi) = 02 (21)
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Then,
N *T- T

E(J] = Z (hi-mi)TR1 '(hi-mi) + Trace[(hiRi'hi)E(vivi)J
i=1

N N i
[(hi-mi)TRi'(hi-mi) + (aihi)TR I(aihi)] + p E f [h(f)]2dt (22)

i=1 i=2 ti-1

As mentioned previously, our main purpose is to obtain the estimates of the

values of the unknown function and its first derivatives at grids ti,

i=1,2,...,N, i.e., h(ti) and h(ti). To make the problem simpler, it is proposed

that the state variable approach be used. Thus the optimization problem in Eq.

(19) can be transformed into a state estimation problem, where each state vector

xi is defined as:

xi = [h(f),h(f)]T . (23)

Hence, the objective functional J becomes

N _
E[J) = E [(Hxi-mi)TRi'(Hxi-mi) + (Hxi)TRi'(Hxi)]

i=1

N Ai
+ P E f [p(t)]Idt (24)

i=2 Pi-I

where

H = [1,0] , H = [Oaoi] (25)

Now the key to solving the problem in Eq. (24) is to evaluate the smoothing

integral so as to obtain an expression in terms of state variables.

Problem Formulation for Two-Dimensional Grid

When the observation data are noise corrupted and the underlying system is

unknown, it is proposed to approximate the original signal by spline functions

which minimize a certain objective function. Thus, from a set of discrete

measurements, mi,j, corrupted by the white noise process, vi,j
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mi,j(pijaj) = f(Ai,9j) + Uj,j , ,,..Nj = ,, .N(26)

with angle errors

Ai= i+ vi and Oj = nj + uj (27)

The original two-dimensional signal f(t,q) defined in the region of (tn is

approximated by a spline function s(t,n) which minimizes the following objective

function:

J = c + is(28)

where
M N

J= E Z [5(Ai'6j) -mi ,j]TRi'j [s(Aj ,e) - miii]
j=1 i=1

+ ~ ~ ~ ~ ~ T £ s- 1 ~ -s~' I[s(Ai,oj) - s(ti'flj)] (29)

and
TIM CN

is= paf f, z(t,in)dtdn] (30)

where p > 0 is the smoothing parameter; Ri = E[MijpijT] is the observation

error covariance; and z(C,q) is a certain smoothness measure of s(t,ri) at (.t,f).

The following relation can be derived by using Taylor's series expansion at

as as
s(Ai9j)- W(imfj) = at Rimfl) vi + at (ti~nj9uj + O(vi)o(uj) (31)

Since vi and uji are stochastic variables, we will use the expected value of Jc,

E(Jc) as the functional to be minimized.

Define
as

SCOi,j) = -- (imTj) (32)

as
5Ti(i,j) = -- (Riinj) (33)
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We have

M N
E[Jc]= E E {s(ij)_m1.]TR_![sj=l izili

+ [aisC(i,j)]TRi3[aist(i,j)]

+ [ojsn(i,j)]TRij)[jsn(i,j)]I (34)

where

T
oi2 = E[vivi] (35)

and

T
_j2 = E[ujuj] (36)

Choice of An Approximating Function

In this report, we are interested in obtaining smoothed estimates of func-

tion values and the first derivatives in both t and n directions. Here, we pro-

pose to restrict our approximating functions to piecewise bicubic Hermite

polynomials which have continuous first derivatives in both t and n directions.

Let us define

A as as 8s Txi~j = [S(U,)M -- (R,) -- (RM , - (R,)](i,rnj) (37)
at an? atian

for i = 1,2,...,N and j = 1,2,...,M. Then a piecewise bicubic Hermite polyno-

mial is completely defined by xi j , i = 1,2,...,M as follows:

)= si,j(,) , for Ci = i+1 (38)

and

ij I r r j+i (39)

Thus, si,j(C,1 j) can be written in terms of the basis functions * and 4, which

are the bicubic Hermite polynomials (spline functions), as follows:

8



T

sij(R,7) M i+lj+m  (40)
1=0 m=O

Then Eq. (34) becomes

M N
EIJc) = E E ([Hxi,j - i,j]TRij[Hxi,j -mij]

j=1 i=1

+ (Hixij]TRT3[Hixij]

+ [Hjxij]TRi3[Hjxij]l (41)

where

H = [1 0 0 0] (42)

Hi = [0 ai 0 0] (43)

Hj = (0 0 Qj 0] (44)

Choice of the Smoothness Measure z(f,n)

Here we present three examples of the smoothness measures and compare their

physical implications.

1. Gaussian curvature: The mean curvature of a surface at (tq) is defined

as:

(0.5)ZsM(Sn) (45)

Noting in Euler's theorem that the sum of two curvatures in perpendicular direc-

tions at a point is constant, the square of V9s(t,n) in Eq. (45) would be a

reasonable measure for the smoothness of a surface

82 82
z(RM) = [--; s(RM) + --- s(,)]' (46)
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2. A variation from the Gaussian curvature: With reference to Eq. (46),

an interesting case occurs when the two principal curvatures are equal and of

the opposite sign. The mean curvature in this case is zero. This is the so-

called "saddle point" and every surface element of such a membrane is "pure

twist." An appropriate smoothness measure would be changed to:

88 aa
z,")= s((,)]' + (--- s(UM)]P (47)

3. It is suggested to use IJ JVs(9,n)J J2 as a smoothness measure for a sur-

face. The physical interpretation of the quantity V4s(C,n) is found in a plate

bending theory; an unloaded plate can bend only in a biharmonic function w where

V'w = 0 (48)

Smoothina Integral

Now we need to determine the function s(C,q) which minimizes the objective

function J in Eq. (28). It is noted that the smoothing integral in its present

form gives difficulties in finding an explicit solution. By evaluating the

integrals of the derivatives of basis functions and applying some algebraic

manipulations, these smoothing integrals are converted to quadratic forms as

follows:

is a pf TMfe [z(C,ri)]d~dni = pM E INE 1f r~+ i+1[(~)d
Ili C1  jul i=1 nj Ci

M-1 N-1
= E (xijT, xi+,jT, xi,j+1 T, xi+,,j+,T)j=1 i=1

C * (xi,jT, xi+l,jT, xi,j+lT, xi+l,j+lT)T (49)

where C is a 16 by 16 matrix.

10



Now we can put the objective function together from Eqs. (28), (45), and

(49) as

J = E[Jc] + Js

M N
= 1 : {[Hxi j mij]TR-I[Hxi,- mij]

jul iul i

+ [;ixij]TRij[Hixij] + [Hjxij]TRi3[Hjxij]I

N-1 N-1
+ E E [XijT, xi+ 1 ,jT, xi,j+iT, xi+i,j+iT]

j=l i.1

0 C[xi,jT, xi+,jT, xi,j+T, Xi+l,j+lT]T  (50)

For the optimal values of J, one can take the partial derivative of J with

respect to the state variables xi,j, etc. and set to zero.

CONCLUSIONS

The effect of random angular errors to the range measurement has been

studied with the approximating function at the random node modeled. The func-

tional is expressed first in terms of the smooth functions and then in terms of

state variables. An expected value of this functional is formulated so that it

is in terms of the covariance of the random angular errors. The work has been

extended to two-dimensional random grids using bicubic Hermite polynomials.
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Figure 2. Random noise in angle and range measurements.
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Figure 3. Representation of function due to angular errors.
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